Isotherm 3201 ASU & 3701 ASU

Installation and operating instruction
Installations- och bruksanvisning
Bedienungs- und Einbaueinleitung
Instruction d’installation et d’emploi
ISOTHERM 3201 ASU / 3701 ASU

Operating and installation instructions.

General
ISOTHERM 3201/3701 "ASU - Automatic Start Up" is a modern refrigeration system for sailing yachts and motor cruisers. It is designed to generate low refrigeration temperatures even in hot conditions while at the same time consuming an absolute minimum of battery power. This is achieved by using a patented electronic control system, which runs the refrigeration compressor at 75 % higher speed when the boat's engine is running. This, in combination with a holding plate inside the refrigerator, stores the refrigeration energy produced for long periods.

The easy do-it-yourself installation requires no connections to either the engine or its cooling system.

This manual is also valid for 3251 & 3751 ASU SP together with the separate SP installation instructions.

The following points are important if good results are to be achieved.

Refrigerator box
To retain as much cold air as possible when opened, a top-loading box is usually preferable to a side opening one.
A most important factor in achieving good results is that the refrigeration box is well insulated. Expanded or cross-linked polystyrene or polyurethane insulation material should be used. Recommended minimum thickness (multiply by 3 for freezer boxes): 30 mm for a 50-litre box, 50 mm for a 100-litre box and 75 - 100 mm for larger boxes. If space is available use thicker insulation around the lower part of the box.
A moveable partition should be installed in the box to allow the frozen food section surrounding the cold plate to be reduced to the smallest space possible so that the correct temperature of 4 - 6° (39 - 43°F) can easier be maintained in the refrigeration section.
The lid must also be insulated but more important that it fits tightly into the opening.
If a water drain is fitted in the bottom of the box, this must always be closed during use to avoid cold air from running out and warm, damp air entering.

Electrical system
An electrical system that is both correctly dimensioned and in good working order is required. This is especially important if the refrigeration system is to operate continuously for a few days during warm weather and not have to start the engine for charging.
Calculate the boat's total power requirements.
The engine should always have a separate battery for starting. In addition to the battery capacity required by other electrical equipment onboard, one extra 75 Ah battery will be sufficient for the refrigeration power supply. In addition to increasing the amount of "standby-power" available onboard, the extra service battery can also store surplus power when this is being generated by the engine.
Two batteries can, of course, accept twice the amount of charge. The alternator is normally not a limiting factor.
All service batteries must have generously-dimensioned cables for both positive and negative circuits if they are to receive full charging voltage from the alternator.

Using the refrigerator
Power consumption is dependant to a large degree on how the refrigerator is used.
Let refrigerated food remain inside the fridge as far as possible and take them out only when required. Don't leave them out of the fridge longer than absolutely necessary when cooking or having your meal. Replace them as quickly as possible.
Avoid placing warm food in the fridge. If possible, use an insulated thermal bag when carrying frozen or chilled foodstuffs from home or the shops.
Let the engine run a few minutes extra when leaving and entering harbour. The engine alternator will then supply an extra boost of refrigeration energy just when needed, i.e. immediately before "no-power" periods of sailing and in harbour.

Refrigeration temperatures
The correct temperatures for storing sensitive foodstuffs such as meat, fish, milk, etc. are as follows:
The correct way to store refrigerated food is never allow its temperature to exceed 6° (43°F). Switching off the refrigerator overnight is a false economy and from a hygienic point-of-view is not recommended.

MAIN COMPONENTS

ISOTHERM refrigerator systems consist of three main components: the Compressor Unit, the Holding Plate and the Control Panel.

Compressor Unit - (Fig. A)
The Danfoss BD35F and BD50F dual volt 12/24 type refrigeration compressor is of the very latest design. It produces extremely high refrigeration energy while consuming very little battery power. As it is driven by 12 volt 3-phase alternating current, it has an unbeatable starting ability and its speed and capacity can be regulated. It is of the same totally hermetic design as that of domestic refrigerators and has, therefore, a long operating life, low sound level, and is completely maintenance-free. The piston-type compressor operates on a mixture of cooling medium and oil. It is to be fitted horizontally with its feet downwards but it will operate at a continuous angle-of-heel of up to 30° in all directions. Should this angle be exceeded, the compressor will stop automatically. It will re-start automatically when the angle has been reduced. The BD 35F compressor unit is integral with the condenser, which is equipped with a fan that also can be equipped with a connection for an optional cooling-air hose kit. The BD50F compressor is equipped with a lamellar condenser having a hose connection mounted.

<table>
<thead>
<tr>
<th>Internal temperature of refrigerated food</th>
<th>Duration after which food can become unfit for consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°C (50°F)</td>
<td>1 day or less</td>
</tr>
<tr>
<td>8°C (46°F)</td>
<td>1-2 days</td>
</tr>
<tr>
<td>6°C (43°F)</td>
<td>2-3 days</td>
</tr>
<tr>
<td>4°C (39°F)</td>
<td>5 days</td>
</tr>
<tr>
<td>1°C (34°F)</td>
<td>5-7 days</td>
</tr>
</tbody>
</table>

The compressor unit is delivered pre-filled with cooling medium and has irreversible, quick-coupling connections on the ends of the flexible piping which connects it to the holding plate. These couplings can be disconnected and re-connected should either unit need re-positioning.

To simplify connecting up the system, the electronic control unit mounted on the left side of the compressor is fitted with tab-type terminals for the positive and negative main power cables; large modular (telephone type) connectors for the 4 metre cable to the control panel; and small modular connectors for the 3.5 metre cable for the temperature sensor on the rear of the holding plate. It contains a micro-processor with programmed functions for slow-running; speeding-up the compressor when the engine is running; battery monitoring for high and low voltage (cut-out at 10/22.0 volt, cut-in 12/23.5 volt); monitoring of compressor speed and power consumption; regulating the holding plate temperature and fan speed; transmitting signals to the control panel such as flashing indicator lights should there be a malfunction. The compressor together with its electronic unit fulfils applicable radio interference regulations and is CE-marked.

When connected to shore power, a high-quality battery charger of minimum 10 Amp output should be used. This must always be connected to the boat's service batteries and never directly to the control unit. When using shore-power, the Control Panel should be in the "MAN.TEMP" position.

Holding Plate - (Fig. B)
The holding plate is a hermetic, stainless steel container holding a special freon-free eutectic liquid medium, which freezes to ice when the engine is running. The freezing point of the liquid is normally -8°C (17°F). The holding plate is connected to the compressor unit by a pliable, 3 metre long tinned copper pipe of 6 mm diameter fitted with quick-coupling connections. The holding plate must be fitted as high as possible in the refrigerator. It may be installed in any vertical or horizontal position required and at any level above or below that of the compressor unit.
A temperature sensor is fitted to the rear of the holding plate. This is to be connected to the compressor unit by the 3.5 metre cable supplied and can suitably follow the same route as the 3 metre connecting pipe. This pipe (together with the compressor and holding plate) is pre-filled with exactly the correct amount of cooling medium and on no account should any attempt be made to either shorten or lengthen it. If the pipe is too long, the excess should be made into a coil at some suitable position. If a longer pipe is required, a pre-filled 2.5 metre extension pipe is available. A 2.5 metre extension for the temperature sensor cable is also available.

Control Panel -(Fig. C)
The control panel is equipped with a three-way switch: green, yellow and red indicator lights; and a rheostat for manual temperature adjustment when running on shore-power or a solar panel. Inside the control panel box is a modular connector for the 4 metre cable from the electronic control unit on the compressor. Should this require extending, use the 10 metre long accessory cable instead.

OPERATION

The ISOTHERM refrigeration system can be operated in two ways. When energy saving is needed, switch to "NORMAL-AUTO" position. Optimum refrigeration temperature is then automatically maintained while consuming the lowest amount of battery power possible. When there is no need of energy saving, switch to "MAN.TEMP" position. The automatic function is now partially blocked and refrigeration temperature can be manually adjusted (Fig. C). In its centre position, the ISOTHERM unit is switched off.

"NORMAL-AUTO" position:
The green light indicates that power is being supplied and the refrigeration programme is activated. When the engine is running and the voltage supply (measured at the compressor's control unit) is over 13.2 (26.4) volt, the compressor starts to supply cooling energy to the holding plate. It starts within the first 30 seconds and operates first at low speed with the yellow "Economy" indicator lit. After about half a minute, the speed of the compressor and cooling fan increases by 75% and the red "Freeze" indicator lights. This operating condition is maintained until the holding plate is completely frozen at approximately -14° (7°F). This can take between 45 minutes and 2 hours depending on the model, ambient temperature, box size and insulation. On reaching this temperature, the compressor stops and red light goes out. When the temperature of the holding plate rises to -10°C (14°F), the compressor re-starts to charge the holding plate and the red light comes on again. This process is repeated a couple of times every hour keeping the holding plate at its optimum efficiency level. When the engine is stopped, the compressor also stops shortly afterwards. When the engine is stopped and the battery voltage is below 12.7 (25.4) volt, the surplus of refrigeration energy stored in the holding plate is used first. Only when this has been consumed does the compressor start. The yellow light indicates that it is now running at its low "Economy" speed to "top-up" the holding plate only. This condition starts when the temperature of the holding plate rises to -1°C (30°F) and stops when it reaches economy level of -6°C (21°F).

"MAN-TEMP" position:
This position can be used either when shore-power or solar panels are being used or when energy saving is not required and a higher or lower refrigerator temperature is desirable for some reason. The automatic function is blocked the temperature regulated by means of the rheostat - clockwise for colder and anti-clockwise for warmer. "A" indicates the holding plate temperature point for "Accumulation", approx. –8°C (17°F). In the "MAN-TEMP" position, the compressor starts to maintain the temperature chosen. It runs on lowest possible speed, as the engine is stopped, with a very nearly inaudible level of sound.
Indicator lights

<table>
<thead>
<tr>
<th>Color Combination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Power and system on, but compressor at standstill due to sufficiently low temperature of holding plate.</td>
</tr>
<tr>
<td>Green+yellow</td>
<td>Compressor running within the higher temperature range.</td>
</tr>
<tr>
<td>Green+red</td>
<td>Compressor running at high speed within the lower temperature range.</td>
</tr>
<tr>
<td>Green+yellow+red</td>
<td>Compressor running at lowest possible speed to reach selected temperature in MAN. TEMP mode.</td>
</tr>
<tr>
<td>Green and flashing yellow+red</td>
<td>Error signal from electronic unit. Automatic re-start after 1 minute.</td>
</tr>
<tr>
<td>Green and flashing yellow</td>
<td>Low battery voltage sensor has switched off the system. Automatic re-start occurs when engine is started to charge batteries again.</td>
</tr>
</tbody>
</table>

Note: The compressor will start 30 seconds after switching on. When the engine is started, ½-10 minutes is required (depending on the boats charging equipment and battery condition) before the system reacts. When the engine is stopped, ½-5 minutes is required (depending on battery condition and level of charge) before the system reacts.

Maintenance

If the quick-coupling connections have been tightened correctly during installation, the totally hermetic ISOTHERM system will never require refilling with refrigerant. Maintenance is limited to removing dust on the condenser radiator with a brush, cleaning the fan, defrosting the holding plate when required and keeping the inside of the refrigerator dry. It is of vital importance that the batteries and charging system are kept in good condition.

Safety Instructions

- When connected to shore-power, ensure that the power supply system is equipped with an ground fault circuit interrupter. **Danger!**
- Never touch bare electric wiring connected to the mains supply. **Danger!**
- Never open the cooling circuit except by the quick couplings, which are designed specifically for that purpose.
- Never connect a battery charger directly to the refrigeration system. It **must** always be connected to the battery. In addition to acid, a newly charged battery contains explosive gas. **Danger!**
- Never cover up the ventilation openings for the compressor unit.

Environment

This product is marked according to the European directive 2002/96/EC on Waste Electric and Electronic equipment (WEEE). By ensuring this product is disposed of correctly, you will help prevent potential negative consequences for the environment and human health, which could otherwise be caused by inappropriate waste handling of this product.

The symbol on the product, or on the documents accompanying the product, indicates that this product may not be treated as household waste. Instead it shall be handed over to the applicable collection point for recycling of electrical and electronic equipment. Disposal must be carried out in accordance with local environmental regulations for waste disposal. For more detailed information about treatment, recovery and recycling of this product, please contact your local city office, your household waste disposal service or the shop where you purchased the product.
Technical Data

<table>
<thead>
<tr>
<th>Type designations:</th>
<th>3201 ASU, 3701 ASU</th>
</tr>
</thead>
</table>
| Capacity: | 3201 suitable for refrigeration boxes of 125 litre (4.4 cu.ft.)
Holding plate 300x210x60 mm (12x8½x2½")
3701 suitable for refrigeration boxes of 200 (7 cu.ft.)
Holding plate 355x270x60 mm (14x11x2½") |
| Compressor: | 3201: Danfoss BD35F with pin condenser and fan
3701: Danfoss BD50F with lamellar condenser and fan |
| Voltage: | 12 (10 - 17) volt
24 (21 - 31) volt |
| Low voltage protection: | Cut in at 10.0 (22.0) volt
Automatic re-start at 12.0 (23.5) volt |
| Power consumption: | 3201: Low speed - approx. 2.5 A (half for 24 volt)
High speed - approx. 5 A
3701: Low speed - approx. 3.5 A (half for 24 volt)
High speed - approx. 6.2 A
Stand-by (green lamp on) - 25 mA
System switched off - 16 mA |
| Fuse: | 15 A for 12 volt. 7.5 A for 24 volt.
Separate holder for U-shaped fuses of car-type. |
| Refrigerant: | Freon-free R134a (quantity as per model identification sticker). |
| Dimension compressor unit: | 3201: 270x160x155 mm (10.6x 6.3x6.1")
3701: 295x160x155 mm (11.6x6.3x6.1") |
| Weight: | 12 kg (26½ lbs) for type 3201
14 kg (30¼ lbs) for type 3701 |

Specifications are subject to change without prior notice.
INSTALLATION

For Isotherm SP, see also additional separate instructions for mounting the through hull fitting.

Tools required
In addition to the usual basic hand tools such as screwdrivers, hammer, pliers, assortment of drills, saw, tape measure, etc., the following are required:
Small electric drilling machine; a 30 mm (1¼") hole-saw drill; a 12 mm (1") drill; a 21 mm and a 24 mm fixed spanner; crimping pliers for electrical tab-type connectors. A sufficient length of electric cable of suitable diameter for connecting the compressor to the battery and an assortment of screws to attach the various components are also required.

General
First, decide where the various components are best situated. Choose a suitable place for the compressor unit at a pipe-run distance of less than 3 metres from the box. Try to find a position that requires only gentle, wide-radius bends on the pipe work. The space intended for the compressor should preferably be cool and large and able to be reached by the cable from the battery.
If the space chosen is not well-ventilated, fit an air supply hose kit and run it to a point where ventilation air can be taken from the bilge (see Fig.)
The compressor space chosen should also be within a cable-run distance of less than 4 metres from that of the control panel. The compressor unit, together with its electronics, is designed to withstand a normal marine environment. It can be fitted in a splash-free position but should preferably be placed in as dry surroundings as possible. Mount the compressor in a horizontal position to allow it to achieve its maximum permitted 30° angle of heel.
The holding plate position in the box should be planned with consideration being taken to the partition, routing of piping, etc. The unit may be fitted in any desired position but must be as high as possible in the box.

Fitting the holding plate
If the box to be used is already in place, inspect it to establish the quality of its insulation, as this is an important thermal efficiency factor.

The best insulation materials are polyurethane foam, extruded polystyrene, Divinycell, Bonocell or any other cross-linked expanded foam. A good rule-of-thumb is that the thickness of this material should be 0.8-1 mm per litre volume of the box. Insulating materials of type Frigolite, Rockwool, etc., do not insulate sufficiently and should not be used.
The holding plate can be placed in any position. It can be fitted vertically, horizontally, upright or hanging. Due to the fact that cold air always "falls" downward, the holding plate should be positioned as high up in the box as possible so as good refrigeration cannot be achieved above this level.
The 6 mm copper pipe leading from the holding plate can be easily bent over the rounded corner of the plate, thereby allowing it to leave the box in any direction.
The best position for the pipe to exit the box is behind it in the space formed by the corner supports of the holding plate. The pipe should be handled with care and bent gradually to avoid creasing it. Form it around a suitable cylindrical object if sharp bends are required. Be particularly careful with the thin capillary pipe and its connection at the opposite end and do not loosen the two locking pipe turns around the thicker pipe. The pipes are pre-filled with refrigerant and must not be cut. Start by unrolling the pipe to its full extent.
Installation of the holding plate is easier if someone can assist. One person can hold the plate and direct the pipe through the side of the box while the other feeds the pipe together with the two connections through bulkheads, etc.
The holding plate can be screwed either onto the wall or on the underside of the top if space is available. If necessary, it may be easier to mount if openings are cut into the holes in the two supports under the holding plate to suit the diameter of the screws to be used. These screws may then be fitted into the box first and the holding plate "slotted" into place. Drill the 30 mm hole for the pipe and connections as high as possible under where the holding plate is to be fitted. This is where it is warmest should any leakage of air occur. Fill the hole surrounding the pipe with insulation material. Any excess piping should be coiled in a suitable position outside the box and securely fastened to avoid vibrating.
Partition for adjusting box temperatures
(Fig. I)
Cold air from the holding plate sinks down to the bottom of the box. The box, therefore, needs a separate space to enable part of it to be used as a freezer compartment. To achieve best results, this compartment should be no larger than absolutely necessary. The dividing partition should be a tight fit against the box sides and reach a height of approximately 5 cm (2 in.) below the top edge of the holding plate.

It should be able to be adjusted vertically from 0-2 mm to create a gap at the bottom to allow a suitable amount of cold air to flow from the freezer section into the refrigeration section to maintain a temperature of +4-6°C (39-43°F). The dividing partition should not be insulated, be easy to clean and preferably made of transparent Plexiglas.

Compressor unit
The compressor unit should be fitted on the "Click-on"-bracket in a horizontal position in a suitable place such as a cupboard, wardrobe, stowage compartment, etc. The unit can also be mounted onto a suitable bulkhead, under the side decks or any other place where no valuable stowage space will be lost. If it is positioned in a stowage place, a guard may be required for protection.

The unit will operate continuously at angles of up to approx. 30° and should therefore be fitted horizontally across the beam of sailing boats so as not to exceed this at full angle of heel. Screw the bracket carefully to the bedding, either horizontal or vertical. Open the lockings by pulling them aside and lift them up slightly. They will then stay in open position. Lower the compressor to the bracket. The rubber feet shall enter the pins. Push the compressor down a little and the lockings will enter locked position. Check that the compressor is safely locked. Installation can often be simplified if the quick-coupling connections on the piping and the compressor are screwed up tight before the compressor unit is finally put down in position. Do not remove the protective caps until this is about to be done and save them for possible future use.

The quick-coupling connections can be turned by hand for the first few threads before continuing tightening steadily and quickly with a spanner so that the connections enter its sealing position and the valves open. While doing this, it is important that the male part of the connection stationary is held with a 21 mm spanner so that it does not rotate and damage the thin capillary tube (see Fig. D). Tighten the couplings up hard. Use fixed spanners 21 and 24 mm for the pipe fittings.

Control panel
The control panel should be positioned where it can be seen easily and within reach of the 4 meter cable from the electronic control box on the compressor. The housing can be mounted using the accompanying long screws. A 12 mm Ø hole should be drilled for the cable. The panel can also be let into its surrounding by removing the plastic housing and attaching it with the accompanying screws.

Electrical wiring
Run a positive lead from the plus (+) terminal of the battery or the battery main switch across the accompanying fuse holder (Fig. F) and a negative lead from the negative (-) battery terminal.

For a 12 Volt system, the minimum area of the cable from the battery to compressor must be: 2.5 mm² if the length is less than 2.5 meter; 4 mm² if up to 4 meter; and 6 mm² if up to 6 meter.

USA wire size: 12 gauge for 10 ft and under and 10 gauge for lengths over 10 ft. These areas can be halved for a 24-volt system.

Connect these cables to their correct tab-type terminals on the control unit. A battery charger must never be connected directly to the refrigeration system without having a battery connected in parallel (See Fig.) A spark occurs when the power leads are connected. This is because the control unit (which consumes only 16 mA in its closed circuit condition) contains a capacitor, which is then charged.

A spark occurs when the power leads are connected. This is because the control unit (which consumes only 16 mA in its closed circuit condition) contains a capacitor, which is then charged.

Connect the two modular plugs in the front of the control unit with the control panel cable plug connected to the lower larger one and the temperature sensor to the upper connector. (See Fig.)
Test run

Set the switch to "NORMAL.AUTO". The green light goes on immediately and the yellow one shortly after indicating that the compressor is running. Shortly after, a slight hissing sound can be heard from the holding plate, which after 15-30 minutes will show signs of moisture or frost.

Start the engine. Within 2-10 minutes (depending on condition of the batteries and alternator) the yellow light will go out, the red one lights when the voltage comes above 13.2 volt. When the engine is stopped, the voltage in the electrical system drops. Within a few minutes, the yellow light comes on, the red goes out. If the holding plate has reached its full refrigeration capacity, however, the compressor will stop instead. There is always a 30 second delay before the electronic monitoring system takes over.

Finally, check that the electrical wiring and pipe work are safe and securely fastened.

Fault finding

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing happens when switched on. All lights off.</td>
<td>No power supply.</td>
<td>Is main power switched on? Check fuse.</td>
</tr>
<tr>
<td>Yellow light flashing. Low voltage cut-out activated.</td>
<td>Battery in poor condition. Voltage drop due to thin cables</td>
<td>Inspect charging circuit. Measure voltage drop when running and replace cables if required. Switch off, wait 5 sec.</td>
</tr>
<tr>
<td>Compressor runs but no refrigeration generated.</td>
<td>Loss of refrigerant. Connections not tight enough.</td>
<td>Inspect and tighten. Contact specialist to fill refrigerant*.</td>
</tr>
<tr>
<td>Compressor runs often but temp. in box not cold enough.</td>
<td>Poor insulation. Fan not running or too warm in compressor compartment. Too much gas in system. (Frost on pipe).</td>
<td>Re-insulate. Repair fan or ventilate the space using air hose kit. Call for refrigeration specialist to check gas pressure and adjust quantity*.</td>
</tr>
<tr>
<td>Compressor never stops running: -Not sufficiently cold. -Too cold. -Temp. cannot be reduced manually.</td>
<td>See above. Temp. sensor faulty. Temp. sensor touching box wall or ice build-up.</td>
<td>See above. Renew. Adjust sensor or defrost by switching off system.</td>
</tr>
<tr>
<td>Compressor keeps running when engine is stopped.</td>
<td>Batteries in excellent condition, or extra power source (solar panel, wind generator, etc.)</td>
<td>Normal operation. If temp. becomes too cold switch to "MAN.TEMP".</td>
</tr>
<tr>
<td>Compressor will not run at full speed and red light not on when engine is running.</td>
<td>Poor charging. Plus or minus cables too thin. Connections affected by verdigris, loose fuse.</td>
<td>Check charging, cables etc. and rectify. Clean and grease. (Correct voltage > 13.4 V measured at control unit with compressor and engine running).</td>
</tr>
<tr>
<td>Radio interference when running.</td>
<td>System is suppressed and fulfills present regulations. CE-marked.</td>
<td>Fit additional suppressor. (Min. 20A).</td>
</tr>
<tr>
<td>Fuse blows.</td>
<td>Fault in control box.</td>
<td>Renew 15 (7.5) A fuse or control box*.</td>
</tr>
</tbody>
</table>

If a complicated fault does occur, such as those requiring specialist assistance (marked *), please contact Indel Marine S.r.l., IT-61019 S. Agata Feltria (PU), Italy or your local marine distributor for advice.

Indel Marine S.r.l.
Phone. +39 0541 848030
Fax +39 0541 848563
E-mail: info @indelmarine.com
ISOTHERM 3201 ASU / 3701 ASU
Installations- och bruksanvisning.

ALLMÄNT

Viktigt för ett gott slutresultat är dock följande:

Kylbox
Välisolerat kylutrymme är grunden för bästa kylekonomi. En toppmata box är oftast att föredra framför ett sidoöppnat skåp. Isoleringen bör vara av tvåburden vinylcellplast, polyuretan eller likvärdigt (ej frigolit). Isoleringens tjocklek bör vara 30 mm för boxar upp till 50 liter, 50 mm för boxar upp till 100 liter och gärna 75-100 mm för större boxar och gärna med tjockast isolering nertill. Boxens volym bör alltid vara avdelad med en mellanvågg, gärna flyttbar i sidled, så att minsta frysutrymme som verkligen erfordras, skapas närmast kylmagasinet, medan större delen av boxen hålls kylskåpskall (+4-6°C). Ett tättlutande lock och välplaceras mellanvågg, tillsammans med god isolering håller det termiska läckaget nere och ger lång hålltid av den i kylmagasinet lagrade kylan. Om boxen har dränring, skall denna hållas stängd. Annars kommer den i boxen nedkylda luften "rinna" ur genom dräneringen och vad värre är, ersätts av varm fuktig luft inifrån båten.

Elsystem
Väl fungerande elsystem är ytterligare en förutsättning för gott resultat, framförallt om man önskar få effektiv kyla under varma förhållanden i flera dygn utan att behöva starta motorn. Gör en bedömning av det totala behovet av batterikapacitet ombord. Motorn skall alltid ha ett separerat startbatteri, men räkna gärna med ett extra batteri på 75 Ah för kylen och därtill lämplig kapacitet för övriga förbrukare. Två förbrukningsbatterier ombord ökar inte bara det totala "strömförbruket" ombord utan framförallt tar två batterier emot dubbelt så mycket laddning som vad ett gör, då båtmotorn är igång och de moderna generatorerna har alltid överkapacitet. Samtliga förbrukningsbatterier ombord bör vara hopkopplade till en "bank" och anslutna med rejäl kablar på så-väl plus- som minusled, så att de verkligen får rätt spänning vid laddning.

Användningssättet är också viktigt. Plocka inte ur och i matvarorna från boxen oftare än nödvändigt. Låt inte mjölkpaketet, flaskor och dylik stå framme länge i värmen efter måltiden, utan ställ helst ner dem i boxen direkt. Kylékonomin förbättras avsevärt om man undviker att stuva in varma varor. Tag gärna med djupfrysta varor hemifrån eller från butiken i en kylbag, istället för att låta båtens aggregat ensamt "göra jobbet". Låt också om möjligt motorn gå några minuter extra vid färd in och ur hamn, eftersom ISOTHERM alltid skapar kyla "gratis" när motorn är igång, genom att generatorns överskottskapacitet tas tillvara. Rätt temperatur för förvaring av hygieniskt ömtåliga färskvaror såsom kött, mjölk, fisk etc. är:

<table>
<thead>
<tr>
<th>Förvarings-temperatur</th>
<th>Hållbarhetstid innan tydlig förskämning (i varan) eller otjänlighet inträffat</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°C</td>
<td>1 dag eller kortare</td>
</tr>
<tr>
<td>8°C</td>
<td>1 maximalt 2 dagar</td>
</tr>
<tr>
<td>6°C</td>
<td>2-3 dagar</td>
</tr>
<tr>
<td>4°C</td>
<td>5 dagar</td>
</tr>
<tr>
<td>3-1°C</td>
<td>5-7 dagar</td>
</tr>
</tbody>
</table>

Rätt förvaring innebär också att temperaturen inte någonsin bör överstiga den lämpliga (4-6°C). Det är alltså förkastligt att stänga av kylen under natten. Det sparar heller ingen ström.
UTFÖRANDE

ISOTHERM består av tre huvudkomponenter: Kompressordel, Kylmagasin och Manöverpanel.

Kompressordel - Fig. A.

Den kan drivas direkt på nätspänning via en speciell konverter eller med en bra batteriladdare på minst 10A, men som då ovillkorligen måste vara kopplad till båtens förbrukningsbatterier. Vid anslutning till "landström" ställs lämpligen manöverpanelens strömställare i lage "MAN.TEMP". Kylmagasinet är en helt sluten förådsbehållare med eutektisk vätska i, som fylls in i under motorgång. Fryspunkten på vätskan är normalt -8°C. För att omvandla vätskan från flytande till fast form (is), åtgärdar ett energi system, som erhålls ström mässigt "gratis" från generatorn, då båt motoran går.

Kylmagasin - Fig. B.

Manöverpanel - Fig. C.
Manöverpanelen är försedd med en 3-låges strömställare, tre kontrollamper, grön, gul och röd, samt en reostat för möjligt till individuell temperaturreglering vid t.ex. landströmsanpassning.

FUNKTIONSSÄTT

ISOTHERM kylaggregat kan manövreras på två sätt. I läge "NORMAL • AUTO" erhålls automatiskt optimal temperatur i boxen till absolut lägsta belastning på batterierna. I läge "MAN. TEMP" koplas automatiken delvis bort och temperaturen kan ställas efter individuellt önskemål (fig. C). I mittläget är aggregatets avstånd:

I läge "NORMAL • AUTO":
Gröna lampan tänds omgående och visar att ström är tillkopplad och följande kylprogram kopplas in:
- Då motorn ej går och spänningsnivån är lägre än 12,7 (25,4) volt används alltid en första hand den lagrade kylan i kylmagasinet. Först när den är förbrukad kopplas kompressorn in och går då företrädesvis på lågvarv med gul lampa tänd, för att "underhållskyla". Den startar då kylmagasinet är -1°C och stannar vid -6°C alltså innan kylmagasinet laddas. Där kompressorn går inom detta temperaturområde för att underhållskyla är gul lampa "Economy" tänd.

I läge "MAN.TEMP."
Detta läge kan användas när man inte behöver prioritera lägsta strömförbrukning, ligger på landström, har solceller eller av annan anledning vill åstadkomma kallare eller varmare temperatur i boxen. Automatiken är då urkopplad och temperaturen regleras manuellt med reostaten, och vid markeringen "A" passeras kylmagasinets temperatur för "Ackumulerings" avföring na -8°C. Då kompressorn i detta läge startar för att hålla den inställda temperaturen, gör den på så låg varvtal som möjligt, då lägsta ljudnivå från kompressorn och fläkt är önskvärd, eftersom båtmotorn ej är igång.

LAMPSIGNALER:

<table>
<thead>
<tr>
<th>Fast grön lampa</th>
<th>Aggregatet tillkopplat, fär ström, men kompressorn går ej, beroende på att det redan är kallt nog.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast grön + gul lampa</td>
<td>Kompressorn går inom det höga temperaturområdet.</td>
</tr>
<tr>
<td>Fast grön + röd lampa</td>
<td>Kompressorn går på hög-varv inom det låga temperaturområdet.</td>
</tr>
<tr>
<td>Fast grön+gul+röd lampa</td>
<td>Kompressorn går på lägsta möjliga varvtal för att uppnå inställd temperature i läge MAN.TEMP.</td>
</tr>
<tr>
<td>Fast grön och blinkande gul+röd lampa</td>
<td>Felsignal från eldel. Automatisk återstart efter 1 min.</td>
</tr>
<tr>
<td>Fast grön och blinkande gul lampa</td>
<td>Batterivakten har löst ut och stängt av aggregatet. Ladda batterierna genom att starta motorn, varvid ISOTHERM-aggregatet automatiskt återstartar.</td>
</tr>
</tbody>
</table>

OBS! Då strömställaren släts till dröjer det 30 sek. innan kompressorn startar. Då motorns starta dröjer det ½-10 minuter innan ISOTHERM reagerar, beroende på båtens laddningsutrustning och batterikondition. Då båtmotorn släts av dröjer det ½-15 minuter innan ISOTHERM reagerar, beroende på batteriernas typ, kapacitet och laddningstillstånd.

UNDERHÅLL:
ISOTHERM är ett helt hermetiskt slutet kylsystem med lödda ledningar och förslutningar och är underhållsfritt samt behöver aldrig påfyllning av kylmedium (förutsatt att snabbkopplingarna dragits åt vid installationen). Kompressorn är av hushållstyp och har förut om mycket hög verkningsgrad en i särklass lång livslängd. Aggregatet skall sitta kvar i båten under vintern (men förmer dock ej alltid starta vid minusgrader). Underhållet inskränker sig till att man vid behov med en pensel e.d. gör rent kompressorns kondensorgaller
från damm. Vidare bör kylmagasinet avfrostas vid behov och boxen hållas torr. Viktigt är också att batterier och laddningsutrustning hålls i god kondition.

SÄKERHETSFÖRESKRIFTER:
- Vid anslutning till landström måste strömfördriften vara jordad och ansluten till jordfelsbrytare, annars föreligger stor risk för personskada om fel uppstår. **Kan medföra livsfara!**
- Vidrör ej osolera- de eller skadade elkablar som är anslutna till växelströmsnätet. **Kan medföra livsfara!**
- Ingrepp i köldmediekretsen får inte göras, utom vid snabbdemonteringen. **Kan medföra livsfara!**
- Köldmedium får ej släppas ut i luften. **Kan medföra livsfara!**
- Batterifladdare måste kopplas till batteriet. **Kan medföra livsfara!**
- Vid framtida skrotning av aggregatet, skall det lämnas till fackmän för korrekt återvinning av ingående komponenter och omhändertagande av köldmedium.

Tekniska data

<table>
<thead>
<tr>
<th>Typbeteckningar</th>
<th>3201 ASU, 3701 ASU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapacitet</td>
<td>3201 lämplig för kylboxar upp till 125 liter. 3701 lämplig för kylboxar upp till 200 liter.</td>
</tr>
<tr>
<td>Kompressor</td>
<td>3201: Danfoss BD35F med trådkondensor 3701: Danfoss BD50F med lamellkondensor</td>
</tr>
<tr>
<td>Spänning</td>
<td>12 (10 - 17) volt, 24 (21 - 31) volt</td>
</tr>
<tr>
<td>Underspänningsskydd</td>
<td>Bryter vid spänning under belastning av 10,0 (22,0) volt. Återkopplar automatiskt då spänningen under minst två minuter varit över 12,0 (23,5) volt.</td>
</tr>
<tr>
<td>Strömförbrukning</td>
<td>3201: Vid drift lågvarv ca. 2,5 Amp (Hälften vid 24 volt). Vid drift högvarv ca. 5 Amp. 3701: Vid drift lågvarv ca. 3,5 Amp (Hälften vid 24 volt). Vid drift högvarv ca. 6,2 Amp. Vid vila (grön lampa tänd) 25 mA Avstängd 16 mA</td>
</tr>
<tr>
<td>Säkring</td>
<td>15 Amp för 12 volt resp. 7,5 A för 24 volt, separat hållare med bilsäkring av "hästskotyp" (DIN 75821)</td>
</tr>
<tr>
<td>Köldmedium</td>
<td>R 134a, påfyllnadsmängd enligt tyypskilt på kompressorn, freonfritt.</td>
</tr>
<tr>
<td>Mått</td>
<td>Kompressordel 3201: 270x160x155 mm 3701: 315x160x155 mm Kylmagasin 3201: 300x210x60 mm 3701: 355x280x60 mm</td>
</tr>
<tr>
<td>Vikt</td>
<td>3201: 14 kg 3701: 16 kg</td>
</tr>
</tbody>
</table>

Miljö

Symbolen på produkten, eller i medföljande dokumentation, indikerar att denna produkt inte får behandlas som vanligt hushållsavfall. Den skall istället lämnas in på en lämplig uppsamlingsplats för återvinning av elektrisk och elektronisk utrustning. Produkten måste kasseras enligt lokala miljöbestämmelser för avfallshantering. För mer information om hantering, återvinning och återvändning av denna produkt, var god kontakta de lokala myndigheterna, ortens sophanteringstjänst eller butiken/företaget där produkten inhandlades.

Rätten till ändringar i specifikationen förbehålles.
MONTERINGSANVISNINGAR:

ALLMÄNT: PLANERA FÖRST INSTALLATIONEN.

För Isotherm ASU SP, se även tilläggsanvisning för montering av SP bordgenomföring.

Välj lämpligt utrymme för kompressordelen på ett avstånd närmare än 3 meter från boxen. Försök att få en enkel och "mjuk" dragning av anslutningsröret mellan box och kompressordel. Utrymmet för kompressordelen skall vara svalt och rymligt eller om det är trängre, ventilerat med slang till luftstolen, gärna hämtad från kölsvinet (se Fig.).

Kompressorn skall placeras vågrätt för att sedan kunna tåla båtens lutningar upp till 30°.

Kylmagasinets placering i boxen planeras med tanke på mellanvägg, dragning av anslutningsröret etc. Kylmagasinet är helt lägesoberoende.

Utöver normala handverktyg behövs bl.a. en borrmaskin med Ø30 mm hälsåg för snabbkopplingarna. Vidare behövs elkabel av tillräcklig area, samt diverse skruv för infästning av komponenterna.

MONTERING AV KYLMAGASIN:

Hål för anslutningsröret med sina snabbkopplingar borras Ø30 mm. Hålet skall gärna sitta högst upp i boxen där det är som varmast för att begränsa läckage och tätas med isolering eller tätningskum. Överblivet anslutningsröret lindas upp igen i ett sling utanför boxen och fästes ordentligt för att ej vibra eller skramla. Se till att röret ej kommer att nötas mot andra föremål.

Mellanvägg - temperaturreglering (Fig. I)

Kylan "rinner" ner och lägger sig på boxens botten. Boxen bör därför delas av med en mellanvägg, så att kylmagasinet med sin lagrade kyla stängs in i ett "frys"-fack. "Frys"-facket skall för bästa kylkonomi och längsta hålltid endast göras så litet som man verkliga behöver. Mellanväggen skall vara tätslutande mot väggarna och nå upp till minst cirka 50 mm under magasinets överkant och nertill kunna justeras till en lämplig springa till boxens botton. Genom att variera denna springa 0-2 mm, gärna på så sätt att mellanväggen i sin helhet kan skjutas något upp och ner, bestämmer man mängden kall luft som tillåts "rinna" under mellanväggen till kyldelen, så att man där får lämplig temperatur på +4 till +6°C. Mellanväggen skall vara osolerad, lätt att hålla ren och gärna av genomskinligt plexiglas.

MONTERING KOMPRESSORDEL:

Kompressordelen skall monteras vågrätt med fästfötterna nedåt i ett lämpligt utrymme: skåp, garderob, stuvfack etc. Skruva fast konsolen stabilt mot underlaget, antingen horisontellt på durk eller vertikalt på ett skott.

Kompressorn kan arbeta kontinuerligt i lutningar upp till 30°. I segelbåtar skall den därför monteras i helt vågrätt läge vad beträffar tvärkepsriktning med tanke på båtens krängningsvinkel vid segling.

Många gånger kan det vara enklast att dra ihop kompressordelens och anslutningsrörets snabbkopplingar innan kompressorn slutgiltigt sätts på plats.

Snabbkopplingarna gängas ihop de första varven för hand och överfallsmutter dras sedan jämt och snabbt, så att kopplingen går i tätningsläge och öppnar sina ventiler. Håll alltid emot med en nyckel (21 mm) på hankopplingen, så att denna ej tillåts rotera och skada det tunna kapillärröret (fig. D).

MONTERING MANÖVERPANEL:

INKOPPLING AV ELANSLUTNINGAR:

Drag plus och minuskabeln helst direkt till batteriet respektive huvud-strömbrytaren, via medföljande särkingshållare, som monteras separat vid strömkällan (fig. F).
<table>
<thead>
<tr>
<th>Felindikering</th>
<th>Möjlig orsak</th>
<th>Åtgärd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompressorn slår ej av då båtmotorn stannar och kylmagasinet är kallt.</td>
<td>Mycket bra batterier. Tillskott från solceller?</td>
<td>Normalt. Om det blir för kallt ställ strömställaren i läge "MAN - TEMP".</td>
</tr>
<tr>
<td>Säkringen går.</td>
<td>Fel i eldel.</td>
<td>Byt säkring 15 (7.5 för 24V) Amp, eller eldelar*.</td>
</tr>
</tbody>
</table>

Vid komplicerade fel, som ofta fordrar specialist märkt*, kontakta gärna Thermoprodukter AB, Kalmar, eller aktuell importör.

Thermoprodukter AB
Dragonvägen 6
392 39 Kalmar
tel. 0480-425 880 Fax 0480-12775 E-mail: service@isotherm.com
ISOTHERM 3201 ASU / 3701 ASU
INSTALLATIONS- UND BETRIEBSANLEITUNG

Diese Anweisung ist auch für 3251 & 3751 ASU SP zusammen mit separates SP Montageanweisung gültig.

Allgemeines

Das Ganze ist sehr einfach zu installieren und erfordert keine Anschlüsse an Motor oder Kühlsystem.

Folgende Punkte sind für einen optimalen Betrieb von Bedeutung:

Kühlbox
Um bei Öffnen so wenig Kühlverlust wie möglich zu haben, ist eine Toplader-Box einem Kühlschrank mit seitlicher Öffnungstür vorzuziehen. Ein wichtiger Faktor für gute Kühlqualität ist die Isolierung der Kühlbox.

Verwenden Sie kein Isolationsmaterial vom Typ Frigolit. Die Isolierung sollte aus aufgeschäumtem oder Polystyren oder Polyurethan bestehen. Die empfohlene Stärke liegt bei mindestens 30 mm für ein 50-Liter-Box, 50 mm für bis zu 100 Liter und 75-100 mm für größere Kühlboxen. (Reine Gefrierboxen-Freezer-brauchen die 3-fache Stärke.) Wenn ausreichend Platz vorhanden ist, packen Sie dickere Isolierung um den unteren Teil der Kühlbox.

In der Box sollte eine bewegliche Zwischenwand installiert werden, um einen kleineren Raum für gefrorene Lebensmittel um den Kältespeicher herum zu schaffen und einen größeren Teil des Boxvolumens für Kühlzwecke bei 4-6 °C zu haben.

Die Öffnungsklappe muß ebenfalls sehr gut isoliert sein und dicht schließen.

Elektrisches System
Es wird ein elektrisches System benötigt, daß die korrekten Maße haben und gut arbeiten. Das ist besonders wichtig, wenn das Kühlsystem bei warmem Wetter einige Tage ununterbrochen arbeiten muß, ohne daß der Motor gestartet wird.

Elektrisches System
Der Energieverbrauch hängt in erster Linie davon ab, wie die Kühlbox / der Kühlschrank benutzt wird.

Kühltemperaturen
Die korrekten Temperaturen für die Lagerung von empfindlichem Lebensmittel wie Fleisch, Fisch, Milch usw. sind folgende:
<table>
<thead>
<tr>
<th>Gefrier-/Kühlguttemperatur</th>
<th>Haltbarkeitsdauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°C</td>
<td>1 Tag oder weniger</td>
</tr>
<tr>
<td>8°C</td>
<td>1-2 Tage</td>
</tr>
<tr>
<td>6°C</td>
<td>2-3 Tage</td>
</tr>
<tr>
<td>4°C</td>
<td>5 Tage</td>
</tr>
<tr>
<td>1°C</td>
<td>5-7 Tage</td>
</tr>
</tbody>
</table>

Kühlgut richtig lagern heißt, **niemals** die Temperatur über 6 °C steigen lassen. Die Ausschalten der Kühlbox über Nacht ist der falsche Weg, sparsam zu sein und aus Gesundheits- und Hygienegründen **nicht** zu empfehlen.

HAUPTBESTANDTEILE

ISOTHERM Kühlsysteme bestehen aus drei Hauptkomponenten: Kompressoreinheit, Kältespeicher und Kontrolleinheit (Schalttafel).

Kompressoreinheit (Abb. A)

Die Kontrolleinheit besitzt einen Mikroprozessor mit Programmfunctionen für langsamen Betrieb, für Kompressorschleunigung, wenn der Motor läuft, für Batterieüberwachung bei niedriger und hoher Spannung (Trennen bei 10/22.0 Volt, Anlegen bei 12/23.5 Volt), für Kontrolle der Drehzahl und des Energieverbrauchs, für die Regelung der Kältespeichertemperatur und der Lüfterdrehzahl, für die Übertragung der Signale zur Schalttafel (blinkendes Licht bei Fehlfunktion).

Der Kompressor und die Kontrolleinheit entsprechen den Bestimmungen zur Funkentstörung und haben die CE-Kennzeichnung.

Bei Anschluß an Landstrom verwenden Sie einen hochwertigen Batterielader mit mind. 10 A Ausgang, der **immer** an die Servicebatterien des Bootes angeschlossen werden **muß** und **niemals** direkt an die Kontrolleinheit bei Verwendung von Landstrom soll an der Schalttafel auf „MAN.TEMP“ eingestellt werden.

Kältespeicher (Abb. B)

Der Kältespeicher ist ein abgeschlossener Container aus rostfreiem Stahl, der ein spezielles freonfreies Kühlmittel enthält, das zu Eis getrieben, wenn der Motor läuft. Der Gefrierpunkt der Kühlflüssigkeit liegt bei -8 °C. Der Kältespeicher ist mit der Kompressoreinheit durch ein biegsames, verzinktes, 3-Meter langes Kupferrohr von 6 mm Durchmesser mit trennbaren

Schalttafel (Abb. C)
Das Schaltbrett hat einen 3-Wege-Schalter, grünes, gelbes und rotes Lämpchen und einen Regelwiderstand für manuelle Temperatureinstellung bei Landstrom oder Hauptnetzanschluß.
In Schalttafelkasten befindet sich ein Modularanschluß für das 4-Meter-Kabel von der elektronischen Kontrolleinheit am Kompressor. Reicht diese Kabellänge nicht aus, verwenden Sie stattdessen das 10-Meter-Zusatzkabel.

BETRIEB
Das ISOTHERM Kühlssystem kann auf zwei Arten betrieben werden. Schalter auf „NORMAL.AUTO“ Position- die optimale Kühltemperatur wird automatisch eingehalten bei absolut niedrigstem Batterieverbrauch (energiesparend).
„MAN.TEMP“- Position- die automatische Funktion ist teilweise blockiert, die Kühltemperatur kann manuell eingestellt werden (siehe Abb. C).
Bei mittlerer Schaltposition ist die ISOTHERM Einheit ausgeschaltet.
„NORMAL.AUTO“
Das grüne Licht leuchtet auf und zeigt damit an, daß Strom geliefert und das Kühlprogramm aktiviert wird.
Wird der Motor gestoppt, geht kurz danach auch der Kompressor aus.
Wenn der Motor nicht läuft und die Batteriespannung unter 12,7 Volt (25,4) ist, wird zuerst die im Kältespeicher vorhandene Kühlenergie genutzt. Erst wenn diese verbraucht ist, startet der Kompressor wieder, das gelbe Licht geht an, was bedeutet, daß er nun bei „Economy“ Drehzahl (so niedrig Drehzahl wie möglich) läuft um den Kältespeicher „aufzufüllen“. Dieser Vorgang tritt ein, wenn die Temperatur des Kältespeichers -1 °C angestiegen ist. Er wird beendet, wenn wieder die „Economy“- Stufe mit -6 °C erreicht ist.
„MAN.TEMP“
Diese Schalterstellung kann benutzt werden, wenn Land-oder Solarstrom verwendet wird oder aus anderen Gründen eine niedrigere oder höhere Kühltemperatur benötigt wird. Die Automatikfunktion ist dann blockiert, die Temperatur wird mit Hilfe eines Regelwiderstands eingestellt- im Uhrzeigersinn=kälter, entgegen dem Uhrzeigersinn=wärmer.
<table>
<thead>
<tr>
<th>Farbe</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grün</td>
<td>Strom liegt an, System an, aber Kompressor läuft noch nicht, da Temperatur im Kältespeicher noch tief genug.</td>
</tr>
<tr>
<td>Grün+Gelb</td>
<td>Kompressor läuft bei niedriger Drehzahl, der Kältespeicher wird schwach „nachgekühlt“.</td>
</tr>
<tr>
<td>Grün+Rot</td>
<td>Kompressor läuft auf höchster Drehzahl, der Kältespeicher wird stark gekühlt.</td>
</tr>
<tr>
<td>Grün+Gelb+Rot</td>
<td>Kompressor läuft bei niedriger Drehzahl im „MAN_TEMP“.</td>
</tr>
<tr>
<td>Grün + Blinkendes Licht:</td>
<td></td>
</tr>
<tr>
<td>Gelb+Rot</td>
<td>Fehlersignal von Steuereinheit. Automatischer Neustart nach 60 Sekunden.</td>
</tr>
</tbody>
</table>

Hinweis:

Wartung

Sicherheitshinweise
- Beim Anschluß an Landstrom muß die Stromversorgung geerdet und an einen F1-Schalter angeschlossen sein. Falsch ausgeführte Elektroinstallation könne Lebensgefahr bedeuten.
- Berühren Sie niemals nichtisolierte oder beschädigte Elektrokabel, die an das Wechselstromnetz angeschlossen sind. Es bedeutet Lebensgefahr!
- Es dürfen keine Eingriffe in den Kühlmittelkreislauf vorgenommen werden, außer an den Schnellkupplungen, da sich wieder öffnen lassen.
- Es muss verhindert werden, dass Kühlmittel in die Atmosphäre entweichen kann.
- Decken Sie die Belüftung der Kompressor-Einheit niemals ab.
- Schließen Sie kein Batterieladegerät direkt an das Kühlaggregat an. Batterieladegerät muss immer an die Batterie angeschlossen werden.
- Eine neugeladete Batterie enthält außer ätzender Batteriesäure auch explosive Gase.
- Eine spätere Verschrottung des Aggregates darf nur vom Fachmann vorgenommen werden, der die enthaltenen Bestandteile der Wiederverwertung zuführt und das Kühlmittel korrekt entsorgt.

Bitte wenden Sie sich an die zuständigen Behörden Ihrer Gemeindeverwaltung, an den lokalen Recyclinghof für Haushaltsmüll oder an den Händler, bei dem Sie dieses Gerät erworben haben, um weitere Informationen über Behandlung, Verwertung und Wiederverwendung dieses Produkt zu erhalten.

Technische Daten

<table>
<thead>
<tr>
<th>Typ-Bezeichnungen:</th>
<th>3201 ASU, 3701 ASU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapazität:</td>
<td>3201 passend für Kühlboxen bis 125 Liter</td>
</tr>
<tr>
<td></td>
<td>3701 passend für Kühlboxen bis 200 Liter</td>
</tr>
<tr>
<td>Kompressor:</td>
<td>3201: Danfoss BD35F mit Drahtkondensor</td>
</tr>
<tr>
<td></td>
<td>3701: Danfoss BD50F mit Lamellenkondensor</td>
</tr>
<tr>
<td>Spannung:</td>
<td>12 (10-17) Volt, 24 (22.5-31) Volt</td>
</tr>
<tr>
<td>Unterspannungsschutz:</td>
<td>Abschaltung bei 10.0 / 22.0 Volt</td>
</tr>
<tr>
<td></td>
<td>Einschalten bei 12.0 / 23.5 Volt</td>
</tr>
<tr>
<td>Stromverbrauch:</td>
<td>3201: Bei niedriger Drehzahl ca. 2.5 A</td>
</tr>
<tr>
<td></td>
<td>Bei hoher Drehzahl ca. 5 A (Die Hälfte bei 24 Volt)</td>
</tr>
<tr>
<td></td>
<td>3701: Bei niedriger Drehzahl ca. 3.5 A</td>
</tr>
<tr>
<td></td>
<td>Bei hoher Drehzahl ca. 6.2 A (Die Hälfte bei 24 Volt)</td>
</tr>
<tr>
<td></td>
<td>Bei Ruhe (grünes Licht an) 25 mA (Die Hälfte bei 24 Volt)</td>
</tr>
<tr>
<td></td>
<td>System Abgeschaltet 16 mA (Die Hälfte bei 24 Volt)</td>
</tr>
<tr>
<td>Sicherung:</td>
<td>12 Volt: 15A, 24 Volt: 7.5A</td>
</tr>
<tr>
<td></td>
<td>Separate Sicherungsfassung für Autosicherung DIN 75281</td>
</tr>
<tr>
<td>Kühlmittel:</td>
<td>R134a (Menge steht auf Typenschild des Modells)</td>
</tr>
<tr>
<td>Abmessung:</td>
<td>Kompressorteil 3201: 270x160x155 mm</td>
</tr>
<tr>
<td></td>
<td>Kompressorteil 3701: 315x160x155 mm</td>
</tr>
<tr>
<td></td>
<td>Kältespeicher 3201: 300x210x60 mm</td>
</tr>
<tr>
<td></td>
<td>Kältespeicher 3701: 355x280x60 mm</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>3201: 14 Kg</td>
</tr>
<tr>
<td></td>
<td>3701: 16 Kg</td>
</tr>
</tbody>
</table>

Technische und Konstruktionsänderungen ohne vorherige Ankündigung vorbehalten.
INSTALLATIONSANLEITUNG

Für Isotherm ASU SP, sehen Sie bitte auch zusätzlich Installationsanweisung für SP Borddurchführung.

Allgemeines

Montieren Sie den Kompressor horizontal, damit er bei seinem erlaubten Krängungswinkel von 30 Grad auch arbeiten kann.

Der Standort des Kältespeichers in der Box sollte mit Berücksichtigung auf Verlauf der Rohrleitung, Platz für eine Zwischenwand usw. ausgewählt werden. Der Kältespeicher kann in jeglicher Position angebracht werden, aber so hoch wie möglich in der Box. Für die Installation werden nur übliche Handwerkzeuge benötigt.

Wenn möglich verwenden Sie aber für die Löcher der Schnellkupplungs-Rohranschlüsse eine elektrische Bohrmaschine und eine 30 mm Lochsäge. Ausreichend Kabellänge und eine Anzahl Schrauben zum Befestigen die Einzelteile wird gebraucht.

Ist schon eine Kühllbox eingebaut, überprüfen Sie die Qualität der Isolierung, da dies ein wichtiges Kriterium für die Kühlleistung ist. Das beste Isoliermaterial ist Polystyren, Polyurethan, Diniyycell, Bonocell o.ä. Eine Faustregel ist, daß die Dicke des Materials 0,8-1 mm pro Liter des Boxvolumens sein sollte. Isoliermaterial wie Frigolit, Rockwell u.ä. ist nicht geeignet.

Anbringen des Kältespeichers

Der Kältespeicher kann in jeglicher Position installiert werden, vertikal, horizontal, stehend oder hängend. Da aber kalte Luft immer nach unten „fällt“, muß der Kältespeicher so hoch wie möglich in der Box untergebracht werden, sonst wird es über der Freezer-Einheit nie kalt. Das 6 mm gegläühte und verzinnte Kupferrohr des Kältespeichers kann leicht über die Kante gebogen und somit in jede Richtung geführt werden. Der günstige Ausgang für das Rohr ist hinter der Box.

Rollen Sie das Rohr ganz aus. Die Installation ist einfacher, wenn zwei Personen arbeiten. Einer hält den Kältespeicher und führt das Rohr durch die Boxenseite, während der andere das Rohr zusammen mit den zwei Anschlüssen durch die Spanten leitet.

Der Kältespeicher kann an der Wand oder an der Unterseite der Freezeroberkante angeschraubt werden. Eventuell ist es einfacher, die unteren Stützträger mit U-Schlitzten („Schlüssellochöffnungen“) zu versehen, damit die Schrauben zuerst an der Box angeschraubt werden können und dann der Kältespeicher „einrasten“ kann. Legen Sie die 30 mm-Bohrung für Rohr und Anschlüsse so hoch wie möglich. Dort ist die wärmste Stelle, sollte es mal zu Luftleckagen kommen.

Füllen Sie den Platz um das Rohr mit Isoliermaterial auf. Überschüssiges Rohr kann außerhalb der Box eingerollt werden. Sicher und befestigen Sie es, damit es nicht vibriert.

Einbau einer Zwischenwand (Abb. I)

Kalte Luft vom Kältespeicher sinkt auf den Boden der Box. Deshalb sollte ein Teil der Box abgetrennt werden, der dann als Gefrierröhrchen dienen kann. Um beste Kühlresultate zu erreichen, sollte dieses Fach nur so groß sein, wie wirklich benötigt. Die Trennwand muß genau passen an den Seiten der Box und bis ca. 5 cm unterhalb der Kältespeicheroberkante reichen.
Die Zwischenwand muß vertikal 0-2 mm verstellbar sein, um am Boden eine Lücke zu schaffen, durch die kalte Luft vom Freezer in das Kühlfach strömen kann und eine Temperatur von 4-6 °C somit zum Kühlen gewährleistet wird. Die Trennwand wird nicht isoliert, muß leicht zu säubern und sollte aus Plexiglas sein.

Kompressor-Einheit (Abb. A)

Schalttafel

Elektrische Verdrahtung
Führen Sie ein positives Kabel vom + Anschluß der Batterie oder Batterie- Hauptschalter über die Sicherungsfassung (Abb. F) und ein negatives Kabel vom Batterie- Anschluß. Bei einem 12 V-System muß der Kabelquerschnitt mind. 4 mm² bei unter 2,5 m Länge betragen, 6 mm² bei bis zu 6 m Länge und 10 mm² bei bis zu 10 m Länge von Batterie zu Kompressor. Jeweils die Hälfte gilt für 24 Volt-Systeme, aber nie weniger als 4 mm². Schließen Sie diese Kabel an ihren Kabelanschlüssen an der Kontrolleinheit an. Ein Batterielader darf nie direkt an das Kühlsystem angeschlossen werden, ohne eine parallel zwischengeschaltete Batterie (Abb.) Wenn die Stromkabel angeschlossen sind, entsteht ein Funke. Das geschieht, weil die Kontrolleinheit (die bei geschlossenem Schaltkreis nur 16 mA verbraucht) einen Kondensator hat, in diesem Moment Strom bekommt. Verbinden Sie die zwei Modulstecker an der Seite der Kontrolleinheit mit dem Schalttafelkabel, angeschlossen am größeren Eingang (Abb. G).

Probelauf
Stellen Sie den Schalter auf „NORMAL.AUTO“. Das grüne Licht geht sofort an, kurz darauf das gelbe, was bedeutet, daß der Kompressor läuft. Kurz danach kann ein leichtes Geräusch vom Kältespeicher zu hören sein, an dem nach 15-30 Minuten schon zu sehen ist, daß er zu frieren beginnt. Starten Sie den Motor. Innerhalb von 2-10 Minuten (je nach Batterie- und Lichtmaschinenzustand) geht das gelbe Licht aus, das rote an wenn die Spannung höher als 13.2 Volt kommt. Wird der Motor gestoppt, fällt die Spannung im elektrischen System ab.

FEHLERSUCHE-CHECKLISTE

<table>
<thead>
<tr>
<th>Fehler</th>
<th>mögliche Ursache</th>
<th>Maßnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompressor stoppt nie:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- nicht kalt genug</td>
<td>Siehe oben.</td>
<td>Siehe oben.</td>
</tr>
<tr>
<td>- zu kalt</td>
<td>Temperatursensor defekt.</td>
<td>Ersetzen.</td>
</tr>
<tr>
<td>Temperatur kann nicht per Hand reguliert werden.</td>
<td>Temp.sensor berührt Boxwand oder ist verreist.</td>
<td>Sensor richten oder Abtauen durch Abschalten.</td>
</tr>
<tr>
<td>Funkstörungen bei Betrieb.</td>
<td>Das System ist eigentlich funkenstört gemäß Vorschrift.</td>
<td>Zusätzlichen Entstörer min. 20 A einbauen.</td>
</tr>
<tr>
<td>Sicherung brennt durch.</td>
<td>Fehler in Kontrolleinheit.</td>
<td>15 A-Sicherung oder Kontrolleinheit auswechseln.*</td>
</tr>
</tbody>
</table>

Die mit * versehenen Punkte bedeutet komplizierte Fehler. Kontaktieren Sie solchen Fällen: Indel Marine S.r.l., IT-61019 S. Agata Feltria (PU), Italy oder Ihren örtlichen Händler. Indel Marine S.r.l. Tel. +39 0541 84 80 30 Fax +39 0541 84 85 63 E-mail: info@indelmarine.com
ISOTHERM 3201 ASU & 3701 ASU

Conservateur à refroidissement par air
Instructions d'installation et d'utilisation

Généralités

L'appareil ISOTHERM 3201 & 3701 "ASU Automatic-Start-Up" est un nouveau groupe froid à refroidissement par air pour les voiliers et les bateaux à moteur. Il est conçu pour produire de faibles températures réfrigérantes, même par temps chaud, tout en consommant peu d'énergie batterie. Ceci est obtenu grâce à un système breveté de commande électronique qui fait fonctionner le compresseur 75% plus vite quand le moteur de propulsion tourne, en combinaison avec une plaque eutectique à l'intérieur du bac qui stocke le froid produit pendant de longues heures. Ces caractéristiques sont combinées avec une installation simple que vous pourrez effectuer vous-même, ne nécessitant aucune connexion, ni avec le moteur de propulsion, ni avec le système de refroidissement.

Si vous souhaitez obtenir les meilleurs résultats, veuillez noter les points suivants.

Compartiment réfrigérateur

Pour conserver le plus d'air froid possible à l'ouverture, un bac à ouverture par le haut est généralement préférable à un réfrigérateur à ouverture latérale.

Pour obtenir de bons résultats, un des facteurs le plus important consiste à bien isoler le compartiment. Le matériau isolant devra être en polystyrène, polyuréthane, en PVC expansé ou mélangé. Épaisseur minimum recommandée (pour un congélateur : tripler l'épaisseur) : 30 mm pour un compartiment de 50 litres, 50 mm jusqu'à 100 litres et 75-100 mm pour un compartiment plus grand. S'il y a suffisamment d'espace, utiliser un isolant plus épais autour de la partie la plus basse du compartiment.

Une cloison amovible devra être installée dans le compartiment afin de réduire au minimum l'espace entourant la plaque eutectique et réservé à la conservation ; le reste du compartiment étant maintenu à 4/6 ° C. Le couvercle doit également être isolé mais l'essentiel est de l'ajuster correctement.

Si un drain est installé au fond du compartiment, il doit être fermé durant l'utilisation afin d'éviter que de l'air froid s'écoule et que de l'air chaud et humide entre dans le compartiment.

Installation électrique

Une installation électrique à la fois correctement dimensionnée et en bon état de marche est recommandée. Ce critère est particulièrement important si le système de réfrigération doit fonctionner continuellement pendant quelques jours par temps chaud, sans avoir à démarrer le moteur pour recharger les batteries.

Évaluer l'énergie totale nécessaire du bateau. Le bateau devra toujours avoir une batterie indépendante pour le démarrage. En plus de la capacité nécessitée par les autres consommateurs un surplus de 75 Ah sera suffisant pour la réfrigération. Cette capacité supplémentaire servira également à stocker le surplus d'énergie lorsque le moteur tourne. Deux batteries peuvent naturellement accepter une charge double. L'alternateur n'est pas normalement un facteur restrictif.

Toutes les batteries de servitude doivent être branchées avec des câbles bien dimensionnés, à la fois pour le circuit positif et le circuit négatif, afin que les batteries soient chargées à la tension maximum de l'alternateur.

Utilisation du réfrigérateur

La puissance de consommation dépend très largement de la façon dont le réfrigérateur est utilisé.

Laissez les aliments réfrigérés dans le réfrigérateur le plus longtemps possible. Les en retirer uniquement lorsque c'est nécessaire. Quand vous les retirez du réfrigérateur, ne les laissez pas dehors trop longtemps ou au soleil (à moins de les cuisiner). Remettez les dans le réfrigérateur le plus rapidement possible.

Evitez autant que possible de mettre de la nourriture tiède dans le réfrigérateur. Si possible, utilisez un sac isotherme quand vous transportez des produits alimentaires congelés ou frais.

Laissez le moteur tourner quelques minutes supplémentaires à la sortie et à l'entrée du port de façon à ce que l'alternateur fournisse beaucoup de froid au bon moment, juste avant une longue période de navigation ou d'arrêt "non branché".
Températures réfrigérantes
Les bonnes températures pour conserver les denrées alimentaires périssables telles que la viande, le poisson, le lait, etc... sont les suivantes :

<table>
<thead>
<tr>
<th>Température intérieure des produits alimentaires réfrigérés</th>
<th>Durée de conservation avant que les produits alimentaires deviennent impropre à la consommation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>1 jour ou moins</td>
</tr>
<tr>
<td>8°</td>
<td>1 - 2 jours</td>
</tr>
<tr>
<td>6°</td>
<td>2 - 3 jours</td>
</tr>
<tr>
<td>4°</td>
<td>5 jours</td>
</tr>
<tr>
<td>1°</td>
<td>5 - 7 jours</td>
</tr>
</tbody>
</table>

La meilleure façon de conserver correctement de la nourriture réfrigérée est de ne jamais laisser sa température excéder les 6° C. Couper le réfrigérateur durant la nuit est une fausse économie et est déconseillé d'un point de vue hygiénique.

Principaux composants
Les systèmes réfrigérants ISOTHERM comprennent trois principaux éléments : le compresseur, la plaque eutectique et le tableau de contrôle.

Le compresseur (voir schéma A)
Le compresseur réfrigérant de type Danfoss BD35F/BD50F 12/24 Volts est de toute dernière conception. Il permet une production extrêmement importante de froid tout en consommant très peu d'énergie batterie. Étant donné qu'il est alimenté en 12 Volts courant alternatif triphasé, il possède une facilité de démarrage inégale et sa vitesse et sa capacité peuvent être régulées. Il est exactement de même conception hermétique qu'un réfrigérateur domestique et il a également une longue durée de vie, il est silencieux et sans entretien. Ce compresseur à piston fonctionne avec un mélange de gaz de refroidissement et d'huile. Il doit être monté horizontalement mais il fonctionnera jusqu'à 30° d'angle dans toutes les directions. Si toutefois cet angle était dépassé, le compresseur s'arrêterait automatiquement. Il se remettrait automatiquement en route lorsque l'angle aurait été réduit.

Le condenseur, monté avec le compresseur sur un châssis commun, est équipé d'un ventilateur à deux vitesses celui-ci étant prévu pour recevoir en option une tuyauterie d'évacuation d'air. Le compresseur est livré pré-rempli avec du gaz de refroidissement et est muni de raccords rapides pour la plaque eutectique. Ces raccords peuvent être ultérieurement déconnectés puis re- connectés si l'on veut déplacer le groupe. Pour simplifier le branchement électrique, le boîtier électronique monté sur le côté gauche du compresseur est équipé :
- d'un bornier à visser pour l'alimentation + et -,
- d'une prise téléphone pour le câble de 4 mètres du tableau de contrôle,
- d'un petit connecteur pour la sonde de température montée sur la plaque eutectique.

Il contient : un micro-processeur doté de fonctions programmées pour un fonctionnement lent et pour une accélération du compresseur lorsque le moteur est en route, un contrôle de batterie pour tension haute ou basse (coupure à 10/22.0 Volts et redémarrage à 12/23.5 Volts), un contrôle de vitesse lente ou rapide et un autre d'énergie consommée, un régulateur de température de la plaque eutectique et de la vitesse du ventilateur, des signaux transmis au tableau de contrôle tels qu'un voyant clignotant en cas de mauvais fonctionnement.

Le compresseur et son système électronique répondent au label CE (EMC compatibilité électro-magnétique). Pour un branchement à quai, utilisez un chargeur de batterie de haute qualité produisant au minimum 10 Ampères qui doit toujours être branché aux batteries des bateaux mais jamais directement au groupe froid. Lors de l'utilisation à quai, le tableau de contrôle doit être en position "MAN. TEMP".

La plaque eutectique (voir schéma B)
La plaque eutectique est un container hermétique en acier inoxydable contenant un gaz de refroidissement qui gèle et se transforme en glace quand le moteur tourne. Le point de congélation du liquide est normalement de - 8° C. La plaque eutectique est reliée au compresseur par un tube souple en cuivre/étain de 3 mètres de long et de 6 mm de diamètre.
La plaque eutectique doit être montée le plus haut possible dans le bac mais peut être installée soit en position verticale, soit en position horizontale et à n'importe quel niveau au dessus ou en dessous du compresseur.

Un capteur de température est positionné à l’arrière de la plaque eutectique. Il est à relier au compresseur par un câble de 3.5 mètres et peut suivre sans problème le même tracé que le tuyau de 3 mètres. Ce tuyau (avec le compresseur et la plaque eutectique) est pré-rempli avec exactement la bonne quantité de gaz de refroidissement et il ne faut en aucun cas faire d’essais avec un peu plus ou un peu moins de gaz. Si le tuyau est trop long, laver le surplus. Si un tuyau plus long est nécessaire, une rallonge de tuyauterie de 2.0/2.5/3.0 mètres de long avec raccords rapides est disponible ainsi qu’une rallonge de 2.5 mètres pour le câble du capteur de température.

Tableau de contrôle (voir schéma C)
Le tableau de contrôle est muni d’un bouton à 3 positions, de voyants lumineux vert, jaune et rouge et d’un rhéostat permettant de régler la température manuellement lors de l’utilisation à quai ou des panneaux solaires. Le tableau de contrôle est équipé d’un connecteur pour le câble de 4 mètres le reliant au boîtier électronique du compresseur. Si cela-ci est trop court, utiliser un câble de 10 mètres.

Utilisation
Le groupe de réfrigération ISOTHERM peut être utilisé de deux façons. Quand vous avez besoin de préserver l’énergie, mettre en position "NORMAL. AUTO" : une température réfrigérante optimum est automatiquement maintenue tandis que la consommation d’énergie batterie reste très faible. Quand vous n’avez pas besoin de préserver l’énergie, mettre en position "MAN. TEMP." : la fonction automatique est partiellement stoppée et la température peut être réglée manuellement (voir schéma C). En position intermédiaire, le groupe est coupé.

Position "NORMAL . AUTO"
Un voyant vert s'allume indiquant que le système est alimenté et que le programme de réfrigération est en marche.

a/ Quand le moteur de propulsion est en route et que l'alimentation est supérieure à 13.2 V (ou 26.4 V), le compresseur commence à générer du froid vers la plaque eutectique. Il démarre en 30 secondes et fonctionne d’abord à vitesse lente (un voyant jaune "ECONOMY" s'allume). Après environ 30 secondes, la vitesse du compresseur et du ventilateur augmente de 75% et le voyant rouge "FREEZE" s'allume. Ce fonctionnement est maintenu jusqu’à ce que la plaque eutectique soit complètement gelée à approximativement - 14° C ; cela prend entre 45 mn et deux heures selon le modèle, la température ambiante et la taille du compartiment. Lorsque cette température est atteinte, le compresseur s’arrête et le voyant rouge s’éteint. Quand la température de la plaque eutectique remonte à - 10° C, le compresseur se remet en route pour refroidir la plaque eutectique et le voyant rouge se rallume. Ce processus se répète deux fois toutes les heures afin de garder la plaque eutectique à son niveau d’efficacité optimum. Quand le moteur est coupé, peu de temps après le compresseur s'arrête également.

b/ Quand le moteur de propulsion ne tourne pas et que l'alimentation batteries est en dessous de 12.7 Volts, le surplus d'énergie réfrigérante stocké dans la plaque eutectique est utilisé en premier. C'est uniquement lorsque ce surplus a été consommé que le compresseur se met en route et que le voyant jaune s'allume indiquant qu'il fonctionne alors à vitesse lente "ECONOMY" pour refroidir la plaque eutectique. Cela se produit lorsque la plaque eutectique remonte à - 1° C, le compresseur s'arrête lorsque les - 6° C sont atteints.

Position "MAN. TEMP."
Cette position peut être utilisée à la fois lors d’un branchement à quai ou avec des panneaux solaires quand on n’a pas besoin de préserver l’énergie stockée ou si, pour d’autres raisons, une température plus froide ou moins froide est désirée. La fonction automatique est bloquée et la température est réglée au moyen du rhéostat - le tourner dans le sens des aiguilles d'une montre pour obtenir une température plus froide et dans le sens inverse des aiguilles d'une montre pour une température moins froide.
"A" signifie "Accumulation" et indique le point de température de solidification de la plaque eutectique. En position "MAN. TEMP." le compresseur commence à garder la température sélectionnée et fonctionne certainement plus longtemps et toujours à vitesse lente (comme avec le moteur coupé, un niveau sonore très faible est apprécié).

Voyants lumineux

<table>
<thead>
<tr>
<th>Type de voyant</th>
<th>Désignation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vert</td>
<td>Système sous tension mais le compresseur est encore en attente du fait que la température de la plaque eutectique est suffisamment basse.</td>
</tr>
<tr>
<td>Vert et jaune</td>
<td>Le compresseur fonctionne lentement pour maintenir uniquement la plaque eutectique refroidie, sans le charger.</td>
</tr>
<tr>
<td>Vert et rouge</td>
<td>Le compresseur fonctionne à plein régime pour geler la plaque eutectique.</td>
</tr>
<tr>
<td>Vert, jaune et rouge</td>
<td>Le compresseur fonctionne à vitesse lente pour obtenir la température choisie en mode "MAN . TEMP".</td>
</tr>
<tr>
<td>Vert, jaune et rouge clignotant</td>
<td>Défaut électrique. Le système se mettrait automatiquement en route après 1 minute.</td>
</tr>
<tr>
<td>Vert clignotant</td>
<td>Le détecteur de basse tension de batterie a coupé le système. La mise en route automatique se produit quand le moteur commence à charger les batteries.</td>
</tr>
</tbody>
</table>

Nota: Après avoir rallumé, 30 secondes sont nécessaires avant que le compresseur démarre. Quand le moteur est en route, 30 secondes à 10 minutes sont nécessaires avant que le système réagisse (cela dépend du système de charge et de l'état de la batterie). Quand le moteur est coupé, 30 secondes à 5 minutes sont nécessaires avant que le système réagisse (cela dépend de la batterie et du niveau de charge).

Entretien

Si les connexions avec les raccords rapides ont été correctement serrées lors du montage, la totalité du système hermétique ISOTHERM ne nécessitera jamais un second remplissage en gaz de refroidissement. L'entretien est limité au nettoyage du radiateur du condenseur (enlever la poussière à l'aide d'une brosse), au nettoyage du ventilateur, au dégivrage de la plaque eutectique lorsque c'est nécessaire et au fait de maintenir l'intérieur du bac sec. Il est extrêmement important d'entretenir correctement la batterie et le système de charge. Le système complet devra rester sur le bateau durant l'hiver mais il peut être impossible de le démarrer à température ambiante si celle-ci est inférieure à 0° C.

Mesures de sécurité

- Lorsqu'il s'agit d'un branchement à quai, vérifier que l'alimentation est équipée d'un disjoncteur différentiel. DANGER !
- Ne jamais toucher de fils électriques nus provenant de l'alimentation principale. DANGER !
- Ne jamais ouvrir le circuit de refroidissement, sauf les raccords rapides qui sont spécialement conçus dans ce but.
- Ne jamais brancher le chargeur de batterie directement au système réfrigérant. Le chargeur de batterie doit être branché à la batterie. En plus de l'acide, une batterie nouvellement chargée contient des gaz explosifs. DANGER !
- Ne jamais couvrir la ventilation du compresseur.

Le symbole present sur l’appareil ou sur la documentation qui l’accompagne indique que ce produit ne peut en aucun cas être traité comme déchet ménager. Il doit par conséquent être remis à un centre de collecte...
des déchets chargé du recyclage des équipements électrique et électronique.
Pour la mise au rebut, respectez les normes relatives à l’élimination des déchets en vigueur dans le pays d’installation.
Pour obtenir de plus amples détails au sujet du traitement, de la récupération et du recyclage de cet appareil, veuillez vous adresser au bureau compétent de votre commune, à la société de collecte des déchets ou directement à votre revendeur.

Données techniques

<table>
<thead>
<tr>
<th>Types de désignations</th>
<th>3201 ASU, 3701 ASU</th>
</tr>
</thead>
</table>
| Capacité | 3201 Convient pour compartiment réfrigérant de 125 litres
3701 Convient pour compartiment réfrigérant de 200 litres |
| Compresseur | 3201: Danfoss BD35F
3701: Danfoss BD50F |
| Tension | 12 (10 - 17) Volts - 24 (22.5 - 31) Volts |
| Détecteur de tension | Coupure à 10 (22.0) volt
Reprise à 12 (23.5) volt |
| Energie consommé | 3201 À petite vitesse: environ approx. 2.5 A - Moitié en 24 Volts
3201 À plein régime: environ approx 5 A - Moitié en 24 Volts
3701 À petite vitesse: environ approx. 3.5 A – Moitié en 24 Volts
3701 À plein régime: environ approx. 6.2 A – Moitié en 24 Volts
Au repos (voyant vert allumé) : 25 mA - Moitié en 24 V |
| Fusible | Boîtier séparé pour fusible de voiture à languette15 A
7.5 A pour 24 Volts |
| Liquide de refroidissement | R 134A (quantité mentionnée sur la plaque) sans fréon |
| Dimensions | Unité compresseur 3201: 270x160x155 mm
Unité compresseur 3701: 315x160x155 mm
Accumulateur eutectique 3201: 300x210x60 mm
Accumulateur eutectique 3701: 355x280x60 mm |
| Poids | 3201: 14 kg
3701 : 16 kg |

Le droit de changement de la spécification est réservé.
Instructions d'installation

Outils nécessaires pour le montage
En plus des outils (à mains) traditionnels tels qu'un tournevis, un marteau, des pinces, différents forets, une scie, un mètre, etc... il faut également une petite foreuse électrique, une scie cloche de 30 mm de diamètre, un foret de 12 mm, deux clés de 21 et 24 mm, des pinces à sertir. Un câble électrique suffisamment long et de diamètre adapté est également nécessaire pour brancher le compresseur à la batterie ainsi que différentes vis pour fixer les différents éléments.

Généralités
Premièrement, étudier où les différents composants sont le mieux installés. Choisir un endroit adapté pour le compresseur de façon à ce qu'il soit, par rapport au tuyau, placé à moins de 3 mètres du bac. Essayer de trouver une position qui conduise à de grandes courbes douces. L'emplacement le mieux adapté pour le compresseur devra être dans un endroit frais et large, capable de recevoir le câble d'alimentation de la batterie. (Voir Accessoires).
Si l'endroit retenu n'est pas correctement ventilé, monter un tuyau d'évacuation d'air relié au ventilateur et le conduire là où la ventilation de l'air puisse se faire par le fond (voir schéma E).
Le compresseur et le tableau de contrôle ne seront pas séparés de plus de 4 mètres (longueur de câble)
Le compresseur, ainsi que ses composants électroniques, sont conçus pour résister à un environnement marin normal. Il peut être monté à l'abri des projections mais il est préférable de le placer dans l'endroit le plus sec possible. Monter le compresseur en position horizontale pour lui permettre d'atteindre une gîte de 30°.
La position de la plaque eutectique dans le bac doit être étudiée en tenant compte du cloisonnage, du passage des tuyaux, etc... La plaque eutectique peut être montée dans n'importe quelle position mais doit être le plus haut possible dans le compartiment.

Montage de la plaque eutectique
Si le compartiment qui va être utilisé est déjà installé, l'inspecter de façon à constater qu'il est bien isolé afin de garantir un bon rendement thermique. Les matériaux isolants les plus performants sont les mousses de polyuréthane Dinivycell, Benocell ou n'importe quel autre mélange à base de mousse de polyuréthane. En règle générale, l'épaisseur de ce matériau doit être de 0,5-1 mm par litre de volume du compartiment. Des matériaux isolants en polystyrène de type frigolite, laine de roche, etc... ne doivent pas être utilisés car ils ne sont pas suffisamment isolants.
La plaque eutectique peut être placée dans n'importe quelle position. Elle peut être montée verticalement, horizontalement, debout ou suspendue. Du fait que l'air froid tombe toujours vers le bas, la plaque eutectique devra être positionnée le plus haut possible dans le compartiment sinon la partie supérieure à la plaque eutectique ne sera jamais assez froide.
Le tuyau cuivre, étamé, recuit de 6 mm de la plaque eutectique peut facilement être courbé pour lui permettre de sortir du compartiment dans n'importe quelle direction. La meilleure position du tuyau pour sortir du compartiment se situe derrière la plaque, dans le coin supérieur.
Le tuyau doit être manipulé avec précaution et courbé petit à petit pour éviter de le plier. Lui faire prendre forme autour d'un objet cylindrique adapté si une forme courbée est nécessaire. Faire particulièrement attention avec le tube capillaire et son branchement à l'opposé. Les tuyaux sont pré-remplis avec du gaz de refroidissement et ne doivent pas être coupés. Commencer par dérouler le tuyau sur toute sa longueur. La mise en place de la plaque eutectique se fait plus facilement si quelqu'un vous aide. Une personne tient la plaque et dirige le tuyau sur le côté du compartiment pendant que l'autre fixe le tuyau et les deux branchements à travers la cloison, etc...
La plaque eutectique peut être vissée soit sur paroi, soit au plafond si l'espace est suffisant. Si nécessaire, cela peut être plus facile si les supports les plus bas sur le congélateur sont ouverts en forme de U. Les vis peuvent alors être fixées, premiers dans le compartiment puis la plaque eutectique glissée dedans. Percer un trou de 30 mm pour le tuyau et les branchements le plus haut possible en dessous de l'endroit où la plaque eutectique va être montée, c'est-à-dire l'endroit le plus chaud d'où proviennent les fuites. Boucher le trou autour du tuyau avec un matériau isolant.
Le surplus du tuyau peut être enroulé correctement à l'extérieur du compartiment et convenablement attaché pour éviter les vibrations.

Cloisonnement pour l’ajustement des températures (figure I)

L'air froid provenant de la plaque eutectique se dirige vers le fond du compartiment. Par conséquent, le bac nécessite le montage d'une séparation permettant ainsi la création d'une partie conservateur. Pour obtenir les meilleurs résultats possibles, ce compartiment ne devra pas être plus large que le strict nécessaire. Cette cloison devra être fixée tout contre le côté du compartiment et atteindre une hauteur approximative de 5 cm en dessous du sommet de la plaque eutectique.

Il devra être possible de l'ajuster verticalement de 0-2 mm pour créer un espace au bas du compartiment pour permettre à une quantité d'air froid suffisante de circuler depuis le conservateur pour maintenir une température de +4/6° C. La partie cloisonnée ne devra pas être isolée et sera facile à nettoyer : le mieux est d'employer un Plexiglass transparent.

Compresseur

Le compresseur devra être monté horizontalement sur ses supports dans un endroit adapté tel qu'un placard, une armoire etc. Visser le consol bien au fondament, également monté horizontal sur la soute ou verticale sur une cloison.

Ouvrir les verrouillages par les iter à gauche et les lever un peut. Ainsi ils restent ouverts. Baisser le compresseur vers la console que les supports accrochent les tasseaux. Pousser, et les verrouillages ses ferment. Il faut contrôler que le compresseur et bien fermé. S'il est installé dans un lieu de stockage, il serait bien de le protéger.

Le compresseur peut fonctionner en continu à 30° et doit par conséquent être monté horizontalement afin de fonctionner sans problème à la gîte. Le compresseur devra être bien fixé pour résister aux mers dures. L'installation peut souvent être simplifiée si les branchements de raccords rapides des tuyaux et du compresseur sont vissés très serrés avant que le compresseur ne soit définitivement mis en place.

N'enlever les capuchons de protection qu'au moment du raccordement et les conserver pour un éventuel usage futur. Les branchements des raccords rapides peuvent être effectués manuellement pour les premiers filetages avant de continuer à les serrer solidement et rapidement avec une clef, de façon à ce que les branchements soient bien connectés et que les valves soient ouvertes. Lors de cette opération, il est important de bien maintenir la partie mâle fixe du connecteur à l'aide d'une cle de 21 mm afin d'éviter sa rotation et le dommage du tube capillaire. Pour cela, utiliser une clef de 21 mm de manière à ce qu'il ne tourne pas et n'endommage pas le tube capillaire (voir schéma D). Serrer fermement les raccords. Utiliser des clefs de 21 et 24 mm pour le montage des tuyaux.

Tableau de contrôle

Le tableau de contrôle devra être installé de façon à ce qu'il soit facilement visible et à moins de 4 mètres (câble) du compresseur. Le cache peut être monté à l'aide de longues vis prévues à cet effet. Percer seulement un trou de 12 mm de diamètre pour le câble. Le tableau peut également être laissé dans son boîtier en ôtant le plastique qui le protège et en le fixant à l'aide des vis.

Câblage électrique

Faire passer un câble électrique positif de la borne + de la batterie ou du coupe-batterie à travers le support du fusible (voir schéma F) et un câble électrique négatif de la borne - de la batterie. Pour un système en 12 Volts, la section du câble devra être au moins de 2.5 mm² si la longueur est inférieure à 2.5 mètres ; de 4 mm² si la longueur est supérieure à 4 mètres ; et de 6 mm² si la longueur est supérieure à 6 mètres de la batterie au compresseur. Ces sections de câbles peuvent être réduites de moitié pour un système en 24 Volts.

Brancher ces câbles aux bornes correspondantes sur le boîtier de contrôle. Le fusible sautera si les branchements sont inversés. Un chargeur de batterie ne doit jamais être directement branché au groupe sans une batterie branchée en parallèle. Une étincelle se produit quand les câbles électriques sont branchés car le boîtier de contrôle (qui consomme seulement 16 mA à l'arrêt) contient un condensateur qui est alors chargé.
Brancher les deux prises de courant sur le côté du boîtier de contrôle aux câbles du tableau de contrôle et de la thermistance sur raccordement inférieure.

Test de fonctionnement

Positionner l'interrupteur sur "NORMAL. AUTO.". Le voyant vert s'allume immédiatement et le jaune tout de suite après indiquant que le compresseur fonctionne à vitesse lente. Immédiatement après, un petit sifflement provenant de la plaque eutectique se fait entendre qui après 15-30 mn montrera des signes d'humidité ou de gel. Mettre le moteur en route.

Après 2-10 mn (selon l'état des batteries et de l'alternateur), le voyant rouge s'allumera et le compresseur et son ventilateur commenceront à tourner à plein régime. Quand le moteur est coupé, la tension du système électrique diminue. Àbout de quelques minutes, le voyant jaune se rallume, le rouge s'étète et la vitesse du compresseur et du ventilateur est réduite. Cependant, si la plaque eutectique a atteint son niveau de réfrigération maximum, le compresseur s'arrêtera. Il y a toujours un délai de 30 secondes (la première fois, 2,5 mn) avant que le système électronique ne réagisse. Finalement, vérifier que le câblage électrique et que les canalisations sont sur et correctement fixés.

Manuel des pannes

<table>
<thead>
<tr>
<th>Panne</th>
<th>Cause Possible</th>
<th>Dépannage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rein ne se passe à l'allumage.</td>
<td>Pas d'énergi.</td>
<td>Le coupe-batterie est-il fermé? Vérifier le fusible.</td>
</tr>
<tr>
<td>Aucun voyant ne s'allume.</td>
<td>La plaque eutectique est suffisamment froide.</td>
<td>Rien à faire.</td>
</tr>
<tr>
<td>Le voyant vert s'allume.</td>
<td>Le capteur de température n'est pas branché.</td>
<td>Vérifier le câble.</td>
</tr>
<tr>
<td>Coupure sur basse tension batterie.</td>
<td>Fablesse de la batterie.</td>
<td>Vérifier le circuit de charge. Mesurer la chaute de tension en marche et remplacer le câble si nécessaire.</td>
</tr>
<tr>
<td>Le compresseur fonctionne mais le froid n'est pas produit.</td>
<td>La tension diminue à cause de câbles troo fins.</td>
<td>Vérifier et resserrer. Contacter un spécialiste pour rajouter du gaz de refroidissement.</td>
</tr>
<tr>
<td>Le compresseur se met souvent en route mais la température dans le compartiment n'est pas assez froide.</td>
<td>Perte de gaz de refroidissement. Les branchements ne sont pas assez serrés.</td>
<td>Isoler da vantage. Rérarer le ventilateur ou ventiler l'endroit en utilisant un tuyau d'évacuation d'air (pièce détachée nº 10013). Faire appel à un spécialiste de la réfrigération pour vérifier la pression du gaz et ajuster la quantité. Lorsqu'un défaut majeur persiste nécessairement un spécialiste, nous consulter.</td>
</tr>
<tr>
<td>Panne</td>
<td>Cause Possible</td>
<td>Dépannage</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| Le compresseur ne cesse de tourner:
- pas suffisamment froid
- trop froid
- la température ne peut pas être diminuée manuellement | - voir ci-dessus
- capteur de température défectueux
- le détecteur de température touche la paroi du compartiment où de la glace se forme. | voir ci-dessus
remplacer le capteur de température
déplacer le détecteur ou dégriffer
en coupant le système |
| Le compresseur continue de tourner alors que le moteur est arrêté. | Batteries en excellent état ou source d'énergie supplémentaire (panneaux solaires, éolienne,) | Fonctionnement normal.
Si la température devient trop froide. Appuyer sur "MAN.TEMP". |
| Le compresseur ne fonctionne pas à plein régime et le voyant rouge ne s'allume pas quand le moteur est en route. | Manque d'énergie. Câble au + et au - trop fin.
Branchement défectueux par oxydation, fusible desserré. | Vérifier la charge, le câblage,... et modifier.
Nettoyer et graisser (la tension doit être >13.4 V au tableau de contrôle lorsque le compresseur et le moteur tournent).
Ajouter l'anti.parasite additionel (Min. 20A-12 V) |
| Perturbation radio quand système mis en route. | Le groupe est anti-parisité et conforme aux règles en vigueur. | Changer le fusible (15A-12V / 7.5A-24V) ou le boîtier de contrôle. Lorsqu'un défaut majeur persiste nécessitant un spécialiste, nous consulter. |
| Fusible saute. | Inversion du + et du -.
Défaillance du boîtier de contrôle. | |

Indel Marine S.r.l.
Phone +39 0541 848030
Fax +39 0541 848563
E-mail: info@indelmarine.com
1. Temperature sensor on holding plate
 Termistor på kylmagasin
 Temperatursensor an Kältespeicher
 Sonde de température de la plaque réfrégerante

2. Fuse 15A-12V / 7.5A-24V
 Säkring
 Sicherung
 Fusible

3. Battery connection
 Batterianslutning
 Batterieanschluß
 Branchement de la batterie

4. Fan connection
 Fläktanslutning
 Lüfter Anschluß
 Branchement de la ventilateur

5. Connection control cable
 Anslutning manöverkabel
 Anschluß Schaltpanelkabel
 Branchement de tableau de commande
Coolbox - design example
Kylbox - exempel på utförande
Kühlbox - Bauvorbild